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The method of solution presented in [I 1 lends itself to the analysis of 
the perturbed fluid motion and the hydrodynamic forces due to the oscifla- 
tion of thin cascades. Specifically, consider a cascade consisting of an 
inclined row of flat blades of width d and period 1 exp ip (see Fig. 1) 
(i =rl). The study of the perturbed motion about such cascades is 
directly related to the problem of the flow in turbomachines. An approxi- 
mate solution of the problem of small oscillations of the cascade, in 
which the effect of the oscillating cascade is represented by a system 
of concentrated vortices, is given in [ 2 1. 

In what follows, we assume,that the time-dependence of the normal 
velocity v,, and the velocity potential of the fluid motion depends on the 
exponential factor exp jot, where the imaginary index j =,/ri: is to be 
distinguished from the imaginary index i =dy which appears in the vari- 
able z = x + iy. We separate the complex potential into two parts, Y,,(Z) 

and Ok. where ~~(2) defines the non-circulatory flow about the cascade, 
and m,_(z) is the solution of a homogeneous problem (cf. [ 1 f f. In the 
example under consideration, W(Z) is a periodic function with period 
1 exp @, and the functions wO and w1 satisfy on the blades the conditions 

Im dwo 
&, =--v,, IKllu,=A (‘1) 

where A is a constant, to be determined. 

The oncoming flow with velocity vO approaches 
the cascade from the direction x < 0; thus the 

,/~Q$ ~ 

/ / 

function f(t) = r + is is related to or through 
the relation (ref. [l 1) 

/+ 
II/ 

(2) +---+ 

Fig. 1. 
It follows, due to Cl), that on the blades we have the condition 
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Im f = jpLo/l 

Besides conditions (11 and (3) these ex 

(3) 

ons ist the equati 

iim 9 = 0, lim f = 0 for ZI- m 

which express the fact that ahead of the cascade the fluid is not per- 

turbed. 

It is known that the function 

conformally maps the given cascade in the z-plane onto a vertical cascade 

in the u-plane. consisting of flat blades of width 2a and period ni. The 

edges of a 

which 

From re 

blade in the z-plane correspond to points in the u-p lane for 

flz 1 __ =- 
du 

i7 sin 3 - i c0S 3 
sh u 

(sh2 u - sh%)“* ! = ’ 

lations (5) and (6) we have 

a = *ug, u. = ur sh (sh a sin 3) 

In the u-plane the conditions (1) for the function w0 transform to 

conditions of the following form on the segments (-a, a). 

lrndzco = _ 2’ _?z. 
clu * du 

(8) 

We represent the function datO/du in the form of a sum F1 + F2; then it 

follows from (8) that on the segments (-a. O) the functions FL and F2 

satisfy the conditions 

cos 5 sb U 

(sh2 n - sh2u)” 
I lm F, = - rrl 

where the plus sign indicates an approach to the segment (-a, a) from 

above, while the minus sign indicates an approach to the segment from be- 

low. 

It is clear that F1(u) represents a velocity potential function which 

gives a distribution of sources on the segments C-o. al, while F2(u) is 
the velocity potential function which gives the effect of a distribution 

of vortices along these segments. It follows that for the non-circulatory 

flow it is necessary, apart from conditions (41, that Im F (u) = 0 for 

U-, m. Applying the methods of the theory of cascades 13 , we obtain P 
the following expressions for the function w0 : 

a 

dwO I s 0, sh 4 
-zzzz 
du -?- co” _= (sh2a _ shZ Q% 

~cth(5-u)---]d~-t (W 
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= 
+ 

lsinp 
79 i (sh% - sh%)“* s 

v, (sh% - sh2 e)‘lt 

sh (5 - u) 
d5 

-a 

In particular, for pure translational oscillations, we obtain from 
formula (lo), 

sh u 

(5h% > - sh#‘* 

In an analogous wag, tbe function f is determined from conditions (31 
and (4). We have 

where I’-’ is a real constant (with respect to i) which, as will be seen in 

what follows, represents the complex amplitude of the circulation around 
the blade. 

For the determination of the constants r and A we have the condition 
that the velocity be finite at the trailing edges of the cascade, and 
condition (1) for the function wl* Satisfying the condition of finite 
velocity at the trailing edge. i.e. for t = dfZ(u = ~61, we obtain the 
relations 

[cth (4 - no) - I] df, - 

0 
sin 3 v, (sh2a - sh2!$1* 

-- 
EShU s sh(<--0) 

4 - ~PO A 
-a 

ro = 21 sh a (sh a sin n$ - (I+ sha a sin2 83”) (14) 

For pure translational hearing oscillations, (13) has the much simpler 
form 

l’ = l’, (yn - jpoA) = 21 sh a (sh n sin p - fi + sh2 a sinz~)lJ~)(~~ - jy&) 05) 

We will not satisfy condition (1) for the function wi. Since the flow 
is not perturbed far ahead of the cascade, in the direction perpendicular 
to its axis, we have, from (21, P 

w1 = e-jyIz 
s 

&“: f (z) dz (16) 
w 

where the integratfon in (16) is taken along a certain line which joins 
z: and a point which is inffnitely far ahead of the cascade and in a 
direction perpendicular to its axfs. 

Taking into consideration condition (11, we find, from (16). 
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-dJa 

A = ei-‘If Pod 
II 

VZZ---- I 
2 1’ 

D,+iL$ = s ejp+ f (q dz ($7) 

(L) 
To carry the calculations further, let us examine a contour consisting 

of two semi-infinite straight lines, perpendicular to the axis of the 
cascade and joining, at their ends, the segment (-d/2, -d/2 $ I exp $3 1. 

It is evident that the integral of the function f(z) exp jpOz over this 
contour is equal to zero. Therefore, using the periodicity of the func- 
tion f(t) and also relation (12). we will have 

--u,+ni 

D,fiD,=-- 
1 * 

f + @Llr s 
ei~az(u) F (u) du (T = ZeiP) (18) 

-u. 

F(u) = - ; j&, Aeli@ if - shu 
) 

re” 
\ (shx u - sh%f’+ - 2xi (sh2 u - sh2 a)“# 

(19) 

Introducing a change of variable u = -a0 + it and making use of the 
identity 

we obtain the following relation 

A=I’K,---i+AKl (20) 

Here K,, and K1 represent functions of the parameters v, d/t and 8, and 
are determined by integral expressions (the bar on a letter denotes the 
complex conjugate of the quantity, with respect to j, 

Ko=--$‘[~~ exp (- u0Si5 - ie+il*l: (5)) j$j + 

0 
x 

+---L 

s 

- 

4 - $iis o 
expf-uO- ’ d5 

15 + ie + it4 (4)) P 1 
&_- 1 ~v[,~~~,.i(i_i”(‘,~~~-je ,-_j@),jPr(t)dg+ 

0 

,iP x 

+7 
SC - eiFao 

$ + ish (% +ie) ,jft' ,jvt-(t) d[ 

P(f) ) I 

6 = ,j@, c(c) =(jE - uo) sin p-j cos 3 In ch (~0 - ithz ip (El de 

p4 (5) = sh4 a co.9 p + sin4 5 + 2 sh2 a sin2 4 (cosa 3 + 2 sin* ,3 ch* a) 
sin 2e = sh a sin @ sin 25 

P2 15) 
(1 + sh2 a sins fJ)“z 

(21) 

(22) 

(23) 

In the given form, KQ and K1 tray be fairly easily computed with the 
help of ordinary methods of numerical integration. 

From relations (14) we find the final expressions: 

r=r,c(v,$ B), (24) 
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Here ra represents the circulation for u = 0. that is. the value of 
the circulation which is determined under the hypothesis of stationarity 

sia F a z.‘~ (shz a - sh2 $” 
-- 

xsha s eh (f; - ~0) 
- dc 

> (25) 
--a 

which, for un = const, is determined by a very simple expression, as may 
be seen from (15). The function C(v, d/l, 0 ) accounts for the non- 
stationary effects occurring during oscillation of the cascade, and has 
the form 

c(v, $, j>- if ivKl 
I+ icL WI + (x I 8r0Kd 

We will also determine the magnitude of the hydrodynamic force existing 

on a blade of the cascade. For this, we use the formula f 1 I 

(27) 

where L1 is a contour enclosing the blade and taken counter-clockwise. 

Expression (27) may be divided into two parts: 

Y = Yo + l',, y. = - pFoejat Re - I( ?zEE 
dz +iirou’~ d;, 

> 
Y1 = - pzroej5’ Re f dz 

s 
(28) 

I.* Ll 

Using formulas (12) and (24), we find the following expression: 

y1 = ~z-~I’,c(~, +-, s> P 

The force YD is determined by the non-circulatory motion of the fluid, 
and is related to the effect of apparent mass. For pure translational 
oscillations we have 

Existing computations [3 1 show that over a significant range of the 
solidity ratio d/l. the coefficient of apparent mass pyy depends only 
slightly on the inlet angle 0. 
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